SciEL015 omos

22 a 25 de Outubro 2013 | São Paulo - Brasil

Scielo 15 othos

SCIELO

comunicação científica. O objetivo do encontro é destacar e debater o estado da arte em comunicação científica em acesso aberto e os desafios para o desenvolvimento dos periódicos científicos e do Programa SciELO.

22 a 25 de Outubro 2013 | São Paulo - Brasil

Evolução do número de periódicos no SciELO Brasil, entre 1997 e 2012.

— Brasil

Evolução da indexação internacional dos periódicos dos países BRICS, JCR 2002 - 2011

Distribuição da indexação dos periódicos brasileiros nos índices SciELO, Scopus e WoS em Abril de 2013

WoS	140			
SciELO		26	5	
Scopus			291	

<u>World</u> <u>Rank</u> ▲	Portal	<u>Country</u>	<u>Size</u>	<u>Visibility</u>	<u>Files</u> <u>Rich</u>	<u>scholar</u>
1	Scientific Electronic Library Online Brazil SciELO Brazil		5	3	4	2
2	DIALNET	6	4	4	5	3
3	China National Knowledge Infrastructure	, -	1	5	110	1
4	Berkeley Electronic Press BEPress		15	1	38	8
5	Redalyc		28	6	2	5
6	HAL Hyper Article en Ligne		12	9	3	7
7	Revues.org	11	26	1	78	9
8	Érudit Consortium interuniversitaire	м	35	11	1	17
9	Scientific Electronic Library Online Chile SciELO Chile	1	50	10	15	12
10	Scientific Electronic Library Online España SciELO España	-	11	16	21	16

Ranking mundial de portais do Webometrics, Maio 2013.

Distribuição mensal de acessos e downloads de artigos em em 2011 a 2013 - mais de 1 milhão de downloads por dia

Evolução do multilinguismo na Coleção SciELO Brasil

WEB OF KNOWLEDGE[™] | discovery starts here

90% dos periódicos brasileiros tem Fator de Impacto abaixo da mediana nas respectivas áreas temáticas do JCR

Desenvolvimento dos periódicos SciELO:

- profissionalização
 - internacionalização
 - sustentabilidade

textos completos em XML sistema de marcação do SciELO - PMC

Abel L. Packer Programa SciELO / FAPESP, Coordenação Consultor de informação e comunicação em ciência da FAPUNIFESP

São Paulo, 17 maio 2013

estrutura da comunicação científica

submissão – peer-review – edição – formatação – publicação – indexação - interoperabilidade

Modelo Web/Internet: instâncias convergem online com alto grau de simultaneidade

SciELO - estrutura da comunicação científica

Modelo Web/Internet

submissão – peer-review – edição – formatação – publicação – indexação - interoperabilidade

processamento online de manuscrito textos completos em XML

- Requer marcação do texto completo
- Imagens de alta resolução
- Controle de qualidade

Tecnologia de marcação - DTD PMC

bibliometria

interoperabilidade

Modelo Web/Internet

submissão - peer-review - edição - formatação - publicação - indexação - interoperabilidade

SciELO - textos completos em XML – DTD SciELO - PMC

duas opções de marcação – geração do XML

- integrada no processo de editoração e publicação
 arquivo fonte para geração do HTML, PDF e ePUB
 arquivo fonte para o SciELO e PMC
- após a geração do PDF final
 - arquivo fonte para o SciELO e PMC

SNCBI Resources 🖸 How To 🖸

US National Library of Medicine

Journal List Limits Advanced

PMC

-

PMC

PMC is a free full-text archive of biomedical and life sciences journal literature at the U.S. National Institutes of Health's National Library of Medicine (NIH/NLM).

	Social phase Boltzbarri, (A. et Socialize Togen) Roy Dennet Spat Receipt (projecto to Sec
A whole new way	
to read scientific 🚄	
literature at 🛒	Instances and the constraints of the second or to be used on the second
PubMed Central	

Search

PubReader

Get Started
PMC Overview
<u>Users' Guide</u>

A Charteral

Journal List

PMC FAQs

PMC Copyright Notice

Participate	Keep Up to Date
Add a Journal to PMC	New in PMC
Participation Agreements	PMC News Mail List
File Submission Specifications	PMC News RSS
File Validation Tools	

Other	Reso	urces
-------	------	-------

PMC International

Open Access Subset

E-utilities

NLM LitArch

PMC Citation Search

2.7 MILLION Articles are archived in PMC. Content provided in part by:

253

Journals

1250 Full Participation Journals

2145 NIH Portfolio

Selective Deposit Journals

NIH	Pub	lic A	cce	SS

NIH Public Access and PMC

NIH Manuscript Submission System

My Bibliography

PMCID/PMID/NIHMSID Converter

Sign in to N

Н

SciELO

Brazilian Journal of Medical and Biological Research

Online version ISSN 1414-431X

http://dx.doi.org/10.1590/1414-431X20122388

Braz. J. Med. Biol. Res. vol. 46 no. 1

Biomedical Sciences

In vitro and *in vivo* antitumor activity of crude extracts obtained from Brazilian C *hromobacterium* sp isolates

http://ref.scielo.org/y4qccf Article Indicators
 Menezes, C.B.A. 12 Silva, B.P. 12 Sousa, I.M.O. Ruiz, A.L.T.G. Spindola, H.M. Cabral, E. Eberlin, M.N. Tinti, S.V. Cabral, E. Eberlin, M.N. Tinti, S.V. Carvalho, J.E. Foglio, M.A. 12 Fantinatti-Garboggini, F. 12
 Author affiliation (C) Permissions

Publication dates

October 23, 2013

Electronic publication (usually web, but also inclue CD-ROM or other electronic only distribution)

January, 2013 Collection

•

	Article in PDF
	Article in XML
6	Article references
Ø	Automatic translation
2	Send this article by e-mail
(•)	Share this article

Abstract

Natural products produced by microorganisms have been an important source of new substances and lead compounds for the pharmaceutical industry. *Chromobacterium violaceum* is a Gram-negative β-proteobacterium, abundant in water and soil in tropical and subtropical regions and it produces violacein, a pigment that has shown great pharmaceutical potential. Crude extracts of five Brazilian isolates of *Chromobacterium* sp (0.25, 2.5, 25, and 250 µg/mL) were evaluated in an *in vitro* antitumor activity assay with

🍠 Sections

Introduction Material and Methods Results and Discussion Supplemental material

	Sci ELO	Brazilian Journal of Medical and Biological Research	Online version 55913414431X
I. c h	rude ext romobad	nd <i>in vivo</i> antitumor activity of racts obtained from Brazilian C <i>terium</i> sp isolates	Publication-dates Ortober 23, 2013 Biacrosol publication dates Califord and an effect and instally well, for Lib Califord Analage, 2013 Collection
M Se G	indola, H.M. O	Silva, RP (10) Soura, IM D (0) Ruiz, ALTG, (0) Cabral, 5 (0) Eberlin, MN, (0) Tirel, 5 V (0) Foglia, MA, (10) Faminatri-Garbaggini, F, (11)	Article in PDP Article in XM, Article intersecei Article inter

Abstract

Natural graducts produced by macroorganisms have been an important sonace of new solutioness and lead compounds for the observatival industry. Or weakerierism	🔊 Sections
unisone as datas segura le protecharrana, dundara taviar ad od a topola data harryacia in pina a da prodem visitoria, pigane tra hara hare que ne planamental aprestati. Ciste e atrasis el der Datakan solessi el Consoluciones un (25.2), 5.5, 16.20 (2019) gala konse estadanta data un eva arranara catas catara para yark- niza harana sum etc. B. Seconde punchello publica ven estadanta el trabado indertamenta sum etc. B. Seconde punchello publica ven estadanta el trabado discritoria el construcción de la construcción de la construcción de la constru- tica de la construcción de la construcción de la construcción de la constru- ciana construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la revención que de vencional a los ven construcción de la construcción de la constru- de la revención que de la construcción de la construcción de la construcción de la revención que construcción de la construcción de la construcción de la constru- de la revención que de la construcción de la construcción de la construcción de la construcción de la revención que construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la revención que de la construcción de la co	Intenduction Historical and History Resolts and Discussion Supplemental material Acknowledgements References
93.5 and 54.0% growth tabilities, sequencinely. The crude extents of Chromobaershear up tableses theored powerali and orientroe summan activates for certain learness transc collar, making them a powerali source of local ramponeds. Furthermore, the results suggest that other compounds, to addition to visitories, alwaymolateria and FECH, and be autoihed as the antitrance effect observed.	Similar on Scillud offic
Reparate Chorosbocenium qu Antoumor activity, Secondary metabolities, Genetic divenity, Wolacsin	

Important and the second second

A series of a cancel of the despected T22 markets, the two T tabuts of the tabuts of t

Thus, the sam of this study was to excluse the automate activity of crade entrants of Cheeneberration pointies from Nation Grane and Autoencen, Feerdi, and so enableds a noticinaridap leveres of the difference powers and selectory reword human tomas or all lange powers is used in all presence or all order of comparish (ECE) and visions and all new powers is used and presence or all order of comparish (ECE) and visions and all new powers is used and presence or all order of comparish (ECE) and visions and all new powers in the support distribution activity downsame at the second supporting the down powers or an approximation for the samplification exister).

Material and Methods Bacterial stoles

Function and the electronics Datasets in the activation of the electronic of the

The state state

Contrast encoder set of the set o

Can be approximately a second second

Take 2 Contract surver, reported as this value, of organisations of Contract survery in locate tracket against surver surver call time.

References Bisement 0.1 Grage CM Microbial antifumor drags national products of microbial orgin as anticancer agents. Can Opin Investig Graps 2009; 20 1200-3296 d last support of the second sec

The article are nonlined in Feg. 2 MD2 and accepted in Nagles 13. MD2. Note public value of order 23. MD2. This public value of order 23. MD2. This public value of the article of

SciELO Article Redesign Reading Functions: Article Metadata

Parati

Thus, the aim of this study was to evaluate the antitumor activity of crude extracts of *Chromobacterium* sp isolates from Minas Gerais and Amazonas, Brazil, and to establish a relationship between their differences in secondary metabolite compositions. The crude extracts showed cytotoxic activities with different potency and selectivity toward human

efficacy against both human tumor xenografts and murine tumors. This metabolite has shown a great therapeutic potential when compared to trichostatin, a specific inhibitor of histone acetylation, and is a selective agent against chronic leukemia of the lymphocytic cells in clinical assays. Romidepsin was approved by the US Food and Drug Administration in 2009 for use in patients with cutaneous T-cell lymphoma, under the trade name Istodax, and offers a promising new treatment for a disease with few existing therapies ⁹.

.../ scielo.org

4 Þ.

Sci ELO In vitro and in vivo antitumor activity of crude... 🔻 🥩 🐻 🕼 🕼 🕼 🕼 🕍

erude extracts of bacterial cens were obtained by sequential extraction with thiofolorin, ethyl acetate and ethanol solvents. The first crude extract obtained after 3 h of extraction with 150 mL chloroform was designated as chloroform crude extract (ClCE). The second crude extract obtained after 6 h of extraction of the residue of the ClCE extract with 150 mL ethyl acetate was denominated ethyl acetate crude extract (AcCE). The last one was obtained with ethanol (150 mL) after 10 h of extraction from the resulting residue of the AcCE extract and was denominated ethanol crude extract (EtCE). The crude extracts (ClCE, AcCE, and EtCE) were concentrated under vacuum at 40°C (Buchi Rotovapor R200 with Büchi heating steam bath B490, Switzerland), until complete evaporation. The extracts were dissolved in dimethylsulfoxide (DMSO) and assayed for *in vitro* antitumor activity against human tumor cells. In addition, AcCE 310 and EtCE 310 extracts were evaluated for *in vivo* antitumor activity against a murine cancer model - solid **Erraction**

	\$ coefficient	94	7040	*	Rok (E)	10%O for exp
Faihala	-2.16	1.15	3.58	1.25	2.11	0.04.4.87
Age - This phone is	(8.42	1.29	7.79	0.005	10.02	0.002-0.04
failed ACS			4.30	0.05		
H MAY AD	-11.96	187.85	15-194	0.04	8.00	0.00-2.06
Actual IND	-6.55	1.26	8.17	8-67	0.40	0.064.37
Papillary AD	1.62	1.30	1.34	0.04	4.55	0.06-08-04
NeOC .	0.34	1.24	0.07	0.7%	1.41	8-9-14-31
Frage II			3.11	8.24		
Energies 1	14.79	1.04	3.11	0.07	1.18	0.02-1.29
Frage II	-16.12	248.43	18-184	10.044	15-150	0.004.75
10 M 1			0.74	0.08		
PERCENT OF THE PERCEN	-4.21	1.04	0.04	0.02	1.40	1.04.0
ALC: N 1 (1) (1) (1)	-6.40	1.75	0.74	0.34	8.62	8/04/24
rms_0			2.05	0.24		
PER 0 - 25 Ph	1.87	1.00	2.43	0.74	4.82	0.00104.75
PERCENTERS.	1.61	1.00	3.39	0.52	10.04	0.08-42.7
Nikdu 4			12-18-2	0.74		
AREA - 122 Ph	8.35	1.02	0.52	8.72	1.38	000404
AND F LOD IF A	-0.44	0.02	0.02	0.00	0.04	0.10.0.87
unt-d			4.30	12.114		
100.0 -114.0%	2.14	1.06	4.25	0.04	8.65	1103-04-02
AND DISTANCE.	1.01	1.00	1.40	0.25	2.76	0.01.14.00
ead-3			1.79	8.05		
NA5-3-27 #%	-6.80	1.07	15-194	0.45	1.44	0.063.46
Att 1 - 1 - 1 - 1	1.81	0.07	4.01	19-152	4.40	1,223-327-25

Table 1

Cytotoxic activity, reported as TGI values, of crude extracts of *Chromobacterium* sp isolates tested against human tumor cell lines.

Table 2

Cytotoxic activity, reported as TGI values, of crude extracts of *Chromobacterium* sp isolates tested against human tumor cell lines.

SciELO In vitro and in vivo antitumor activity of crude... 🔻 Z) ((·) CIUGE EXTIACTS OF DACTERIAL CERTS WERE ODTAILIEU DY SEQUENTIAL EXTIACTION WITH CHIOLODONI, ethyl acetate and ethanol solvents. The first crude extract obtained after 3 h of extraction with 150 mL chloroform was designated as chloroform crude extract (ClCE). The second crude extract obtained after 6 h of extraction of the residue of the CICE extract with 150 mL ethyl acetate was denominated ethyl acetate crude extract (AcCE). The last one was obtained with ethanol (150 mL) after 10 h of extraction from the resulting residue of the AcCE extract and was denominated ethanol crude extract (EtCE). The crude extracts (ClCE, AcCE, and EtCE) were concentrated under vacuum at 40°C (Büchi Rotovapor R200 with Büchi heating steam bath B490, Switzerland), until complete evaporation. The extracts were dissolved in dimethylsulfoxide (DMSO) and assayed for in vitro antitumor activity against human tumor cells. In addition, AcCE 310 and EtCE 310 extracts were evaluated for in vivo antitumor activity against a marine cancer model - solid 🗈 Ehrlich tumor.

Pane 4 4 14 13 13 14 <th1< th=""></th1<>
Mar G 1.23 1.24 <th1.24< th=""> 1.24 1.24 <th< td=""></th<></th1.24<>
a m, AC -1.0 0.0 1
Mark (K) 4.3 1.21 <th1.21< th=""> 1.21 1.21 <</th1.21<>
Participa (2) 1.01
Note: 1.34 1.04 1.01 <t< td=""></t<>
Name
Name -1.73 10 12 <t< td=""></t<>
Name
Implementation 4.0 1.0 1.0 1.0 1.0 1.0 Implementation 1.0 1.0 1.0 1.0 1.0 1.0 <td< td=""></td<>
And Control 440 And Control 100 100 100 And Control 100 100 100 100 100
Interface 10 10 40 10 40 100 40 100
Mar 2 - 1794 - 147 - 102
Mag 1 (200) 4.14 1.2 Mag 2 (200) Mag 2 (2
Mail 1204 Mail 1204 Mail 2-440 Mail 2-4
Man 2 - MAN 14 14 14 14 14 14 14 14 14 14 14 14 14
142 0 145 14 14 14 14 14 14 14 14 14 14 14 14 14

References

	β coefficient	SE	Wald	Р	Risk (B)	95%CI for exp(B)
Female	-2.18	1.15	3.59	0.05	0.11	0.01-1.07
Age <69 years	-3.62	1.29	7.79	0.005	0.02	0.002-0.34
Solid AD			4.39	0.35		
n situ AD	-11.98	187.53	0.00	0.94	0.00	0.00-2.66
Acinar AD	-0.50	1.20	0.17	0.67	0.60	0.05-6.37
Papillary AD	1.52	1.30	1.37	0.24	4.59	0.35-58.94
SqCC	0.34	1.24	0.07	0.78	1.41	0.12-16.20
Stage III			3.11	0.21		
Stage I	-1.70	0.96	3.11	0.07	0.18	0.02-1.20
Stage II	-15.12	269.63	0.00	0.95	0.00	0.00-8.73
HYAL-1			0.74	0.68		
HYAL-1 <31.9%	-0.21	0.94	0.05	0.82	0.80	0.12-5.17
HYAL-1 >31.9%	-0.63	0.73	0.74	0.38	0.52	0.12-2.25
HYAL-3			2.65	0.26		
HYAL-3 <70.8%	1.57	1.00	2.43	0.11	4.82	0.66-34.79
HYAL-3 >70.8%	1.61	1.09	2.20	0.13	5.04	0.59-42.75
HAS-1			0.60	0.74		
HAS-1 <22.8%	0.33	0.92	0.12	0.72	1.39	0.22-8.54
HAS-1 >22.8%	-0.44	0.92	0.22	0.63	0.64	0.10-3.92
HAS-2			4.30	0.11		
HAS-2 <14.6%	2.16	1.05	4.21	0.04	8.69	1.10-68.57

top

4 F

Encaminhamentos

- adoção da marcação do PMC textos completos em XML periódicos ciências da saúde até dez 2013 todos os periódicos até dez 2014 domínio da tecnologia pelo SciELO domínio da tecnologia pelas empresas brasileiras contratação de empresas e serviços estrangeiros
 - estabilizar estrutura de custos e fontes de custeio
 - ampliar visibilidade internacional
 - avançar na profissionalização e sustentabilidade
 - Obrigado !